Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anim Biosci ; 37(2): 337-345, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38186253

RESUMO

Ruminants possess a specialized four-compartment forestomach, consisting of the reticulum, rumen, omasum, and abomasum. The rumen, the primary fermentative chamber, harbours a dynamic ecosystem comprising bacteria, protozoa, fungi, archaea, and bacteriophages. These microorganisms engage in diverse ecological interactions within the rumen microbiome, primarily benefiting the host animal by deriving energy from plant material breakdown. These interactions encompass symbiosis, such as mutualism and commensalism, as well as parasitism, predation, and competition. These ecological interactions are dependent on many factors, including the production of diverse molecules, such as those involved in quorum sensing (QS). QS is a density-dependent signalling mechanism involving the release of autoinducer (AIs) compounds, when cell density increases AIs bind to receptors causing the altered expression of certain genes. These AIs are classified as mainly being N-acyl-homoserine lactones (AHL; commonly used by Gram-negative bacteria) or autoinducer-2 based systems (AI-2; used by Gram-positive and Gram-negative bacteria); although other less common AI systems exist. Most of our understanding of QS at a gene-level comes from pure culture in vitro studies using bacterial pathogens, with much being unknown on a commensal bacterial and ecosystem level, especially in the context of the rumen microbiome. A small number of studies have explored QS in the rumen using 'omic' technologies, revealing a prevalence of AI-2 QS systems among rumen bacteria. Nevertheless, the implications of these signalling systems on gene regulation, rumen ecology, and ruminant characteristics are largely uncharted territory. Metatranscriptome data tracking the colonization of perennial ryegrass by rumen microbes suggest that these chemicals may influence transitions in bacterial diversity during colonization. The likelihood of undiscovered chemicals within the rumen microbial arsenal is high, with the identified chemicals representing only the tip of the iceberg. A comprehensive grasp of rumen microbial chemical signalling is crucial for addressing the challenges of food security and climate targets.

2.
Front Microbiol ; 13: 897905, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875563

RESUMO

Antimicrobial resistance (AMR) is a serious threat to public health globally; it is estimated that AMR bacteria caused 1.27 million deaths in 2019, and this is set to rise to 10 million deaths annually. Agricultural and soil environments act as antimicrobial resistance gene (ARG) reservoirs, operating as a link between different ecosystems and enabling the mixing and dissemination of resistance genes. Due to the close interactions between humans and agricultural environments, these AMR gene reservoirs are a major risk to both human and animal health. In this study, we aimed to identify the resistance gene reservoirs present in four microbiomes: poultry, ruminant, swine gastrointestinal (GI) tracts coupled with those from soil. This large study brings together every poultry, swine, ruminant, and soil shotgun metagenomic sequence available on the NCBI sequence read archive for the first time. We use the ResFinder database to identify acquired antimicrobial resistance genes in over 5,800 metagenomes. ARGs were diverse and widespread within the metagenomes, with 235, 101, 167, and 182 different resistance genes identified in the poultry, ruminant, swine, and soil microbiomes, respectively. The tetracycline resistance genes were the most widespread in the livestock GI microbiomes, including tet(W)_1, tet(Q)_1, tet(O)_1, and tet(44)_1. The tet(W)_1 resistance gene was found in 99% of livestock GI tract microbiomes, while tet(Q)_1 was identified in 93%, tet(O)_1 in 82%, and finally tet(44)_1 in 69%. Metatranscriptomic analysis confirmed these genes were "real" and expressed in one or more of the livestock GI tract microbiomes, with tet(40)_1 and tet(O)_1 expressed in all three livestock microbiomes. In soil, the most abundant ARG was the oleandomycin resistance gene, ole(B)_1. A total of 55 resistance genes were shared by the four microbiomes, with 11 ARGs actively expressed in two or more microbiomes. By using all available metagenomes we were able to mine a large number of samples and describe resistomes in 37 countries. This study provides a global insight into the diverse and abundant antimicrobial resistance gene reservoirs present in both livestock and soil microbiomes.

3.
Nat Commun ; 10(1): 5252, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748524

RESUMO

Infections caused by multidrug resistant bacteria represent a therapeutic challenge both in clinical settings and in livestock production, but the prevalence of antibiotic resistance genes among the species of bacteria that colonize the gastrointestinal tract of ruminants is not well characterized. Here, we investigate the resistome of 435 ruminal microbial genomes in silico and confirm representative phenotypes in vitro. We find a high abundance of genes encoding tetracycline resistance and evidence that the tet(W) gene is under positive selective pressure. Our findings reveal that tet(W) is located in a novel integrative and conjugative element in several ruminal bacterial genomes. Analyses of rumen microbial metatranscriptomes confirm the expression of the most abundant antibiotic resistance genes. Our data provide insight into antibiotic resistange gene profiles of the main species of ruminal bacteria and reveal the potential role of mobile genetic elements in shaping the resistome of the rumen microbiome, with implications for human and animal health.


Assuntos
Farmacorresistência Bacteriana/genética , Microbioma Gastrointestinal/genética , Rúmen/microbiologia , Actinobacteria/genética , Aminoglicosídeos , Animais , Proteínas de Bactérias/genética , Bacteroidetes/genética , Biologia Computacional , Simulação por Computador , Farmacorresistência Bacteriana Múltipla/genética , Firmicutes/genética , Glicopeptídeos , Fragmentos de Peptídeos , Proteobactérias/genética , Toxina Tetânica , Resistência a Tetraciclina/genética , Resistência beta-Lactâmica/genética
4.
World J Microbiol Biotechnol ; 31(9): 1361-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26081601

RESUMO

The combination of antimicrobial agents has been proposed as a therapeutic strategy to control bacterial diseases and to reduce the emergence of antibiotic-resistant strains in clinical environments. In this study, the interaction between the lantibiotic bovicin HC5 with chloramphenicol, gentamicin, nisin, lysostaphin and hydrogen peroxide against Staphylococcus aureus O46 was evaluated by MIC assays. The central composite rotatable design (CCRD), a robust and economic statistical design, was used to combine concentration levels of different antimicrobials agents with distinct mechanisms of action and the presence of significant interactions among the antimicrobials was determined by regression analysis. According to the adjusted model, there were no significant interactions between bovicin HC5 and gentamicin, lysostaphin, nisin or hydrogen peroxide. However, bovicin HC5 showed a significant interaction (P < 0.02) with chloramphenicol. This is the first study applying the CCRD approach to evaluate the combined effect of antimicrobials against S. aureus. Based on our results, this approach is an effective strategy to determine synergistic interactions between antimicrobial agents applied in human and veterinary medicine against bacterial pathogens.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Cloranfenicol/farmacologia , Sinergismo Farmacológico , Quimioterapia Combinada , Gentamicinas/farmacologia , Humanos , Peróxido de Hidrogênio/farmacologia , Lisostafina/farmacologia , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Nisina/farmacologia , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...